Bilateral vestibular loss in cats leads to active destabilization of balance during pitch and roll rotations of the support surface.
نویسندگان
چکیده
Although the balance difficulties accompanying vestibular loss are well known, the underlying cause remains unclear. We examined the role of vestibular inputs in the automatic postural response (APR) to pitch and roll rotations of the support surface in freely standing cats before and in the first week after bilateral labyrinthectomy. Support surface rotations accelerate the body center of mass toward the downhill side. The normal APR consists of inhibition in the extensors of the uphill limbs and excitation in the downhill limbs to decelerate the body and maintain the alignment of the limbs with respect to earth-vertical. After vestibular lesion, cats were unstable during rotation perturbations and actively pushed themselves downhill rather than uphill, using a postural response that was opposite to that seen in the control trials. The extensors of the uphill rather than downhill limbs were activated, whereas those of the downhill limbs were inhibited rather than being excited. We propose that vestibular inputs provide an important reference to earth-vertical, which is critical to computing the appropriate postural response during active orientation to the vertical. In the absence of this vestibular information, subjects orient to the support surface using proprioceptive inputs, which drives the body downhill resulting in instability and falling. This is consistent with current models of sensory integration for computation of body posture and orientation.
منابع مشابه
Bilateral vestibular loss leads to active destabilization of balance during voluntary head turns in the standing cat.
The purpose of this study was to determine the source of postural instability in labyrinthectomized cats during lateral head turns. Cats were trained to maintain the head in a forward orientation and then perform a rapid, large-amplitude head turn to left or right in yaw, while standing freely on a force platform. Head turns were biomechanically complex with the primary movement in the yaw plan...
متن کاملEffects of postural changes and vestibular lesions on genioglossal muscle activity in conscious cats.
Previous studies in humans showed that genioglossal muscle activity is higher when individuals are supine than when they are upright, and prior experiments in anesthetized or decerebrate animals suggested that vestibular inputs might participate in triggering these alterations in muscle firing. The present study determined the effects of whole body tilts in the pitch (nose-up) plane on genioglo...
متن کاملDestabilization of human balance control by static and dynamic head tilts.
To better understand the effects of varying head movement frequencies on human balance control, 12 healthy adult humans were studied during static and dynamic (0.14, 0.33, 0.6 Hz) head tilts of +/- 30 degrees in the pitch and roll planes. Postural sway was measured during upright stance with eyes closed and altered somatosensory inputs provided by a computerized dynamic posturography (CDP) syst...
متن کاملEffects of bilateral vestibular lesions on orthostatic tolerance in awake cats.
Previous experiments in anesthetized or decerebrate cats showed that the vestibular system participates in adjusting blood pressure during postural changes. The present experiments tested the hypothesis that removal of vestibular inputs in awake cats would affect orthostatic tolerance. Before the lesion, blood pressure typically remained within 10 mmHg of baseline values during nose-up-pitch bo...
متن کاملThe Challenge of Vestibular Rehabilitation in a Patient with Bilateral Vestibular Dysfunction Following Surgery: A Case Report
Introduction: Bilateral vestibular dysfunction (BVD) is an uncommon finding in vestibular assessment, and the combination of BVD and orthopedic problems represents a rare and challenging case for treatment. Case Report: The patient had several previous back surgeries and received gentamycin after surgery. After 6 months, she experienced continuous dizziness, unsteadiness and oscillopsia. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 97 6 شماره
صفحات -
تاریخ انتشار 2007